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Abstract

Topological Data Analysis (TDA) is a field of applied mathematics in which tools
from topology are used to analyze a dataset. The intuition is that by forming a ge-
ometric representation that models the data space, important structural features are
revealed by analyzing its homological features, which may then have significance in
the context of the collected data. Thus, TDA provides an avenue to explore large,
potentially high-dimensional data sets in a mathematically rigorous way.

This paper focuses on an application of TDA to Natural Language Processing (NLP),
a multidisciplinary area of study which broadly aims to develop computational tools
and models to analyze language. By employing NLP techniques to transform text into
vectors, I develop a way of analyzing a data set of books downloaded from Project
Gutenberg and differentiate them by their listed genre. An algorithm (Zhu 2013) is ex-
plored and implemented to capture the “shape of text”, and topological tools are applied
to extract the homological features of each book. I discuss two different perspectives
on classification (1) a t-test on homological statistics (dimensions of H1, feature birth
location, etc.) and (2) a k-medoids approach in which clusters of the vector space are
formed by associating points close to a medoid. The results of this experiment confirm
that TDA provides a powerful way of analyzing text, and I conclude by reflecting on
future work necessary to improve the usage of TDA in NLP.

Introduction

We have the intuition that text is structured, and different genres of text or styles of writing yield
various structures. Science fiction storylines may involve intricate loops, while adventure narratives
may gradually build up to one big climactic event. Classifying and quantifying differences in text
is an example of an application of document representation, an area of natural language processing
which embodies a group of techniques to represent text data in a way that facilitates computational
analysis. The broad goal of this domain is to model natural (human) language in a way that computers
can quickly parse and categorize. For example, current natural language processing techniques of
document representation include algorithms which take a given text and transforms each unit into a
vector, whereby each dimension represents a unique word in the set (Singh et al. 2017).

Topological data analysis (TDA) describes an approach that uses algebraic persistent homology to
uncover the underlying structure of data sets. Given a point-set cloud, a sequence of nested simplicial
complicies are formed by increasing a scale parameter ε and recording the “birth” and “death” of
homological features which arise and disappear in the sequence. Persistent homology provides a
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way of analyzing the “important” structural features by finding the k-dimensional holes (connected
components, holes, trapped volumes, etc.) which persist through the scale parameter.

It then seems promising that TDA would be a useful tool in processing text vector spaces, if
our intuition is that an important aspect of distinguishing classes of texts is exactly this structural
feature. If NLP techniques can accurately model texts into vector spaces, we can treat each vector
as a point, forming a point cloud which can then be analyzed by persistent homology.

The goal of this project is to bridge these two domains and provide an example of such an analysis,
making the implementation of the computational techniques transparent and easily accessible. To
start, this paper will present a short introduction to simplicial and persistent homology, as well as
a tour through relevant techniques and ideas in document representation. The following section will
describe my experiment, where I apply the NLP and TDA tools introduced to analyze book data.
My broad intention is to provide insight into the role TDA can play in language analysis, specifically
assessing the success of these methods to distinguish books by their genre.

1 Simplicial Complex Background

A k-simplex is the smallest convex set containing k + 1 points in general position, meaning that the
vectors formed by the difference of these points are linearly independent in Rn. For each k+1-simplex
[v0v1v2...vk], a subset of these vertices then forms a sub-simplex of the original simplex. For the k+1-
simplex, we call the k-combinations of its vertices (the k-subsimplicies) a face, and the union of all
possible faces forms its boundary. This definition sketches out the first four simplicies:

Figure 1: From left to right, the 0-simplex (point), 1-simplex
(line segment), 2-simplex (triangle), 3-simplex (tetrahedron).

A simplicial complex K ⊂ Rn is defined as a collection of simplicies with the following properties:

• σ ∈ K, τ ∈ σ ⇒ τ ∈ K

• σ1, σ2 ∈ K ⇒ σ1 ∩ σ2 = ∅ or σ1 ∩ σ2 ⊂ σ1 and σ1 ∩ σ2 ⊂ σ2

Informally then, a simplicial complex is a combinations of k-simplicies in which all faces of the
simplicies are included. For an indepth of simplicial complicies, see (Crossley 2010).

Homology

Homology is a subfield of topology which embodies algebraic methods of distinguishing spaces by
counting the number of holes in that space. For instance, we recognize that the circle and disk are
not the same shape because the circle has a hole while the disk does not. The intuition is that the
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n-dimensional holes offer insight into the structural features of a topological space X–in fact, these
holes generate a homology group Hk(X) for a dimension k.

Figure 2: Visual representation of S1, the circle,
and D2, the filled in disc.

Recall that a simplicial complex K is made up of n-simplicies. Let Sn(K) denote the set of all n-
simplicies in K, and Cn(K) be the Z2-vector space with basis Sn(K). Then, we define the boundary
operator as :

δn : Cn(K)→ Cn−1(K)

δ([v0v1...vn])→
n∑
j=0

[v0v1...v̂j ...vn]

where v̂j denotes that vj is removed from the simplex. δn is then a linear transformation on the basis
elements of the vector space. The boundary operator can be iteratively applied to any vector space,
and we define the chain complex as the sequence of chain maps:

C∗ : ...Cn
δn−→ Cn−1

δn−1−−−→ Cn−2...
δ2−→ C1

δ1−→ C0
δ0−→ 0

We define Bn := Im(δn+1) = δn+1(Cn+1) and Zn := Ker(δn). Intuitively, Zn represents cycles and
Bn represents boundaries. For a given Ck, Bk and Zk are subspaces illustrated by the following
boundary relationships:
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Figure 3: A visual depiction of the n, n+1, and n−
1 vector spaces for some Cn. The blue lines indicate
the Image mapping of the boundary operator, that
is, Bn := Im(δn+1). The red lines indicate the
Kernel of the δn map, or Zn := Ker(δn). Note also
that Bn ⊂ Zn.

Finally, define Hn(K) := Zn(K)/Bn(K), the quotient group in which the boundaries are associated
together. Thus, Hn(K) represents the n-dimensional cycles that are not boundaries, that is, “holes”
in the space.

Persistent Homology

Persistent homology applies the features of simplicial homology on point-clouds by generating a
simplicial complex based on the distances between points in the set. The most common methods for
building the complex are the Cech complex, the abstract simplicial complex in which unordered (k+1)-
tuples form a k-simplex if the ε/2-neighborhoods have a common intersection, and the Vietoris-Rips
complex, the abstract simplicial complex in which the points are pairwise within ε (Ghrist 2008).

Figure 4: A visual depiction of the Cech and
Rips complex (Ghrist 2008).
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Note that this definition implies that given a point-cloud, different ε-parameters might yield different
simplicial complicies, and certain ε choices will capture different homological features. The insight
of persistent homology is to consider all simplicial complicies built from a scaling ε-parameter, and
analyze the homological features which endure for an interval (also known as a lifespan). To this end,
the persistent homology of a simplicial complex is often depicted as a persistence diagram, in which
a given k-dimensional feature is plotted on an axis that describes its birth time and death time.

2 Natural Language Processing

Natural Language Processing exists as the intersection of various domains of linguistics, mathemat-
ics, computer science, and psychology, with the common goal of developing computational techniques
which enable computers to process human language (Joshi 1991). A subset of NLP known as doc-
ument/information retrieval has gained importance as the amount of text information has recently
increased dramatically, creating the need for efficient (fast) algorithms and accurate representations
of available text (Milios et al. 2019). One of the most popular approaches is the Vector Space Model,
where documents are processed as vectors for computational text analysis, and each component is a
term within the set of documents.

Vector Space Models

Here we discuss the two most common forms of vectorization, the bag-of-words model and the tf-idf
model. To introduce some relevant terminology we’ll use in this section, let a document be a single
body of text; this can be chosen based on the nature of the text analysis (sentences, paragraphs,
etc.) A term is a single meaningful unit (words, pairs of words, et.). A corpus is a collection of
documents.

Bag-of-words (BoW)

The Bag-of-words model assumes that the frequency of a term determines its importance in a given
document. The vocabulary represents the number of unique words to the corpus, and each document
is translated into a vector, where each entry represents the frequency count of the relevant term (Zhao
2017).

Example 1
Let the corpus be the following four lines:

1. I thought well as well
2. him as another and
3. then I asked him with
4. my eyes to ask 1

The corpus here is the set of these four lines; each line is a document; each word is a term. The
basis (dictionary) of the corpus is defined as the unique words of the set:

{I, thought, well, as, him, another, and, then,with, asked,my, eyes, to, ask}
1Excerpt pulled from Joyce, James. Ulysses. Project Gutenberg. Retrieved May 14, 2019 from

http://www.gutenberg.org/files/4300/4300-h/4300-h.htm.
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. This defines the dimensionality of the space, giving the following four vectors in R14:

I thought well as him another and then with asked my eyes to ask

1 1 1 2 1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 1 1 1 1 0 0 0 0 0 0 0

3 1 0 0 0 1 0 0 1 1 1 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 1 1 1 1

TF-IDF

While BoW models have widely been used for many text-analysis computations, the assumptions of
the model may lose essential features of the text that are important in uncovering the structure of
the text itself. The BoW model assumes that the importance of a term is directly proportional to
the number of times it appears in the document, but this implies that sentences in which common
words are not the most important words are misrepresented. Additionally, we can easily see the
sparsity of the vectors, dubbed the “curse of dimensionality” because the size of the dictionary will
likely significantly outweigh the size of the paragraph. This presents a well-known challenge to the
computational efficiency of text-analysis algorithms (Milios et al 2019).

TF-IDF (term frequency-inverse document frequency) is a model in which the frequency assump-
tions are addressed by weighting the word based on its appearance within the document compared to
its frequency in the corpus. The intuition here is that words important to the document do appear
more times, but this is offset by calculating whether the word appears in other documents, suggesting
that it is less important to the particular document itself (Munteau 2007):

tfidf(term) = tf(term)× idf(term)

tf(term) =
# of times term appears in document

# of terms in document

idf(term) = ln(
# of documents

# of documents in corpus with term
)

Although tf-idf does not address the dimensionality problem, the idea is to incorporate a score for
each word to assess their relative significance, thereby representing the document more approrpriately.

Text Processing Pipeline

In order to process a generic text source, the following cleaning process for the corpus usually takes
place:2

1. Parsing/Tokenization: The text is split up into tokens–most commonly, tokens are words.

2. Pruning/Removal of stop-words: some words are used very often in the English language but
contain very little semantic meaning (e.g. “the”, “you”, “and”). Including these words unnec-
essarily increases the dimensionality of the space, so these words are often removed.

2This pipeline is a generalized summary of the process as provided in (Selivanov 2018) and (Manning 2018).
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3. Stemming: We further reduce the dimensionality of the space by reducing words to a common
base form. For instance, “attacked” and “attacking” are both counted as “attack”.

After cleaning the text, we apply a model to the set (BoW or tf-idf), resulting in a Document Term
Matrix. Let m be the number of documents and k be the number of terms. Then, the DTM is a
m × k matrix such that the [i,j] entry represents the weight of the j-th term in the i-th document.
An example of this was given as a table in the BoW section under Example 1.

Figure 5: A visual representation of the pipeline of text vectorization,. A set of
texts (corpus) is split into documents, which are cleaned and processed. These
documents are then vectorized by a chosen technique, where each vector repre-
sents a weighted value with respect to a given word present in the set.

Additional Text Analysis Concepts

To summarize, vectorization returns a set of vector representations of paragraphs. In order to apply
meaningful analysis to this space, we discuss a notion of distance.

Defining Distance

Persistent homology generates simplicial complicies based on the distances between points in the
point cloud. Viewing the space as Rn perhaps invites us to think of the Euclidean distance between
points, but any notion of distance suffices in constructing the complex. Typically in NLP, to capture
the notion of similarity, the cosine-similarity distance is used, defined as (Zhu 2013):

D(xi, xj) = cos
xTi xj
||xi||||xj ||

From our Document-Term Matrix, we can then compute a cosine distance matrix, where the [i, j] term
represents the cosine-distance between the i-th document (i-th row of DTM) and the j-th document
(j-th row of DTM). Given k documents, this will be a k × k matrix, which is symmetric and has
diagonals of 0.
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Latent Semantic Analysis

The variation in a speaker’s natural vocabulary often leads to high-dimensional vector spaces, even
when adjusting for stop-words and stemming. Although these techniques provide an intuitive cur-
tailment of the wordset, there are other, more sophisticated techniques for dimensionality reduction.
One of the most common techniques employed for this purpose is Latent Semantic Analysis (LSA), a
variation of Principal Component Analysis. The intuition behind the technique is that terms can be
related by semantic content not directly present, and so co-occurences of two terms across documents
increase the likelihood that they are related. Mathematically, LSA can be seen as an instance of
Singular Value Decomposition applied to document-term matricies.

Let M be a document-term matrix. Then, M can be decomposed into M = UΣV T , such that
UTU = I and V TV = I and Σ has entries along its diagonal. Then, for a given rank k, M is approxi-
mated by Ak by selecting k singular values and reconstructing by multiplying its decomposition. The
result of such a decomposition is a semantic space of dimension k, and with a “good” choice of k,
the structure of the vector space is preserved. For an in-depth disccusion on LSA, see (Gefen et al.
2017).

3 Relevant Works

In “Persistent Homology: An Introduction and a New Text Presentation for Natural Language Pro-
cessing”, Zhu uses persistent homology to analyze a set of child and adolescent texts, extracting the
rank of the H1 group over the ε-range, and the ε at which the first H1 feature appears. Zhu finds
statistically significant differences between child and adolescent writing by this simple analysis. Intu-
itively, one-dimensional holes represent “tie-backs”, perhaps signifying a more mature author capable
of relating ideas back to an original thesis or central theme. The key insight of Zhu’s approach is
the development of a SIFTS (Similarity Filtration with Time Skeleton) algorithm, a modification of
the distance matrix in which documents adjacent to each other in the text are given a distance of 0.
When applying persistent homoogy, the complex starts with a connected skeleton, so dim(H0) = 1
for all ε. Zhu refers to these trivial edges as time-edges to capture the flow of a document (Zhu 2013).

In “Topological Signature of 19th Century Novelists: Persistent Homology in Text Mining”,
Gholizadeh et al. approach the author-classification problem through topological data analysis meth-
ods. They extract the ten most important characters of a given novel using Stanford CoreNLP’s
named entity recognizer, and for each character, define an appearance vector in which each entry
refers to the index of the character’s appearance in the text. The distance between two characters is
defined as the Wasserstein distance of order 0.5 between the two appearance vectors. Each novel then,
has 10 character vectors, and the Wasserstein metric of order 1 is applied to analyze the distance
between the persistence diagram for each book. This space is used to execute a 5-Nearest Neighbors
algorithm in binary classification to predict the author of a book (Gholizadeh et al. 2018).

Reflecting upon these two works, both authors attempt to capture the flow of a document, whether
by indexing the appearance of a word or minimizing the distance between adjacent units. Furthermore,
Zhu implements what might be seen as a standard vectorization approach in using tf-idf, but the
approach of Gholizadeh et al. and the success of their algorithms invites us to consider other, more
creative solutions which have the potential of revealing important structural features. Generally,
there is little reason to believe that there is a “correct” notion of distance inside these spaces–while
Zhu uses cosine-similarity, Gholizadeh et al. use Wasserstein distance.
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4 A Topological Approach to Genre Classification

Inspired by works at the intersection of TDA and NLP, this project has the goal of assessing whether
persistent homology is successfully able to differentiate between genres of books. NLP techniques
mentioned in Section Two are utilized to translate book-texts into vector spaces, and Rips complexes
are generated using the cosine-similarity distance. A version of the SIFTS algorithm is directly
implemented to modify the resulting distance matrix, and the R package TDA is used to extract
homological features of the complex.

4.1 Dataset

The R package gutenbergr provides a dataset of public-domain works available for download. An
examination of gutenberg metadata provides the following variables:

title author gutenberg_author_id language gutenberg_id language

has_text gutenberg_bookshelf

We first filter the dataset by isolating those files which have full data on title, text, and author.
“Children’s Fiction”, “Humor”, “Science Fiction”, “Adventure”, and “Biographies” were chosen as
sample genres (gutenberg bookshelf), and a regex matching algorithm was used to sample books
from the database, allowing for books with multiple bookshelf cateogories to be included in the sample.

4.2 Statistical Significance Approach

Each of these genres determines a subset of this dataset. The intuition is that running TDA techniques
to return the homological features of these works will give us a sampling distribution (of that feature),
and then we can compare these statistics across genres.

Figure 6: After running persistent homology on our data sets, we will
have a set of simplicial complicies, each representing one document
in our text data. These are then analyzed via persistence diagrams
or barcodes to discern their respective homological features.
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Pipeline, revisited

We sketch the general pipeline to provide an overview of the methods performed on each book. For
a more complete treatment or an implementation of the steps, see Appendix B.

1. Let bookVector be a vector of integers representing the bookID associated with a book available
for download. For this experiment, bookVector was created by sampling 45 books from each
of the aformentioned categories.

2. For each book, compute its corresponding document-term matrix.

• Separate the book into paragraphs, and extract the middle n = 100.

• Clean the text of each paragraph.

• Compute the Document Term Matrix for the book, using tf-idf weighted scores.

• Perform a LSA to reduce the dimensionality.

3. Compute the distance matrix for the document-term matrix returned from step 2. To reiterate,
given a document-term matrix with k paragraphs, the resulting distance matrix is a k × k-
matrix in which the [i, j] term of the matrix represents the cosine-similarity distance between
paragraphs i and j. As a result, we expect this matrix to be symmetric and have 0s along its
diagonal.

4. To simulate the SIFTS algorithm provided by Zhu (Zhu 2013), this matrix will be modified,
where [i, i+ 1] and [i+ 1, i] terms are set to 0 for all 0 ≤ i ≤ k − 1.

5. Run ripsDiag, inputting this matrix as the distance matrix. Record homological features
reported by the output.
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(a) The Barcode for The Three Musketeers
(b) The persistence diagram for The Three Musketeers

(c) The Barcode for A Damsel in Distress (d) The persistence diagram for A Damsel in Distress

Figure 7: The figures above demonstrate the resulting barcode and per-
sistence diagram completing the pipeline analysis with “The Three Mus-
keteers” (Dumas, gutenberg id = 1257) and “A Damsel in Distress” (PG
Wodehouse, gutenberg id = 2233). Note that regardless of the genre, each
diagram reports a single connected component (due to the time skeleton),
but across the books we see variation in the number of features, the birth
time of the feature, and other homological characteristics.

Iterating through this pipeline for each book gives us a dataframe in which one row represents a book,
reporting its ID, category, number of features (holes, dim = 1), and average birth location, death
location, and lifespan. We consolidate (row-bind) each dataframe to a main data-frame. We compute
pairwise t-tests for each genre, for each statistic of interest. To streamline this process, a function was
implemented to wrap around the process and output a matrix where an entry represents the p-value
returned by the t-test for the genre of the corresponding column and row for a given statistic. See
Figure 12, Appendix A and computeStatistics in Appendix B.

Analysis

We focus on providing a brief analysis for the average number of H1 features of a genre. A similar
analysis can be repeated for any of the homological statistics included in the data frame. See Figure
13 in Appendix A. Setting α = 0.05, there are several pairs of genres which are lower than the
significance level for H1 features:
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Genre 1 Genre 2 p-value

Children’s Fiction Humor 8.27e-05
Children’s Fiction Science Fiction 1.18e-2
Children’s Fiction Biographies 1.13e-2
Humor Adventure 4.38e-3

In terms of a standard statistical analysis of t-tests, it’s important to state the underlying assumptions
of the model and interpret the value accurately. The null hypothesis is that the t-test statistic for
a given two genres are equivalent. Our p-values denote that for the cases listed above, we are 95%
confident that the true difference in the mean of the sample-statistics is not equal to 0. In the
context of our experiment, this means that persistent homology on vector spaces generated from
tf-idf vectorization and cosine-similarity yield statistically significant values for the number of holes.

Additionally, a second iteration of this pipeline was implemented increasing the number of para-
graphs sampled from each book (n = 200) (see Figure 14 in Appendix A). We note an increase in
the number of significant p-values, and a general decrease in the magnitudes. This may correspond
simply to more a greater sample capturing more homological features.

Genre 1 Genre 2 p-value

Children’s Fiction Humor 6.44e-09
Children’s Fiction Science Fiction 2.29e-03
Children’s Fiction Adventure 9.34e-03
Children’s Fiction Biographies 6.58e-05
Humor Science Fiction 4.69e-03
Humor Adventure 1.00e-02

Note that Children’s Fiction appears most frequently as a significantly different genre. In light of
Zhu’s discussion (Zhu 2013), we might conjecture that topology provides insight into the maturity of
the intended author/reader, and that the age of the subject is a significant influence in determining
structural or syntactic writing choices. Zhu also posits that H1 features denote “tie-backs” in the
writing–perhaps indicating a structurally advanced style or ability to relate back to aforementioned
themes and ideas in the work.

4.3 k-medoids Approach

The statistical significance approach allows us to conclude that there are meaningful differences be-
tween some genres, but this statement is limited to the chosen sampling of the dataset. Having
completed this initial investigation, we extend our project to include a clustering analysis to assess
whether this TDA approach can additionally provide persistent diagrams which can be meaningfully
clustered into the genres. Applying a notion of distance between persistence diagrams allows us to run
a k-medoids algorithm. Briefly, given a dataset, a medoid is defined as an assignment of one element
in the set as a proposed central point. The k-medoid algorithm then assigns k points, minimizing
the total dissimiliarity distance between points in the set and the medoids, partitioning the set into
clusters around these points (Arora 2016). Our goal is to assess whether the clusters correspond to
genres, further supporting the claim that structural features captured by persistent homology can
meaningfully distinguish between genres.
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Analysis

The R Package cluster provides the PAM function (Paritioning Around Medoids), where the given
input is a distance matrix, and the output is the set of medoids and the clusters around them. We
reuse the majority of the pipeline of our previous approach to generate vector space representations
of text which are then run through the persistent homology analysis to produce persistence diagrams.
Instead of extracting homological features, we instead compute distances between persistent diagrams.
For reasons of computational complexity in computing this distance, we shorten the dataset to include
15 books from each genre instead of 45. If we consider k books, the result of this algorithm is a distance
matrix of k × k, in which the [i, j]-entry represents the distance between the persistent diagrams of
the i-th and j-th book. Similar to the previous section, we expect this to be a symmetric matrix with
a diagonal of 0s.

In order to expand our approach to cover different notions of distance, we run the same analysis on
four different notions of distance between persistence diagrams: (1) the Bottleneck distance with the
Euclidean metric, (2) the Bottleneck distance with the Manhattan metric (3) the Wasserstein distance
(p = 1) with the Euclidean metric, and (4) the Wasserstein distance (p = 1) with the Manhattan
metric. Each distance will return a cluster, and we assess the genre of each book, incrementing the
tally for each genre. Finally, the data is consolidated into one frame which lists the returned medoids,
their category, and the relevant counts, which are normalized.

Figure 8: Bottleneck, Euclidean

Figure 9: Bottleneck, Manhattan

Figure 10: Wasserstein, Euclidean
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Figure 11: Wasserstein, Manhattan

The analysis is inconclusive to suggest that the clusters effectively capture the genre of text. Note
that only Children’s Fiction, using the Wasserstein-Manhattan or Wasserstein-Euclidean distance,
yields a hit-ratio of 0.5 accuracy ; otherwise, we see serious or ambiguous miscategorization. The
variation in the data combined with the low accuracy rates suggest that the distance between per-
sistence diagrams may not carry meaningful structural implications for text genres. This lack of
significance may also be explained by the limiting features of the dataset and computational com-
plexity conducted within the analysis–using 15 books hardly counts as a “representative” sample of
each genre, compared to the number of books available.

5 Conclusions

Topological data analysis provides a powerful way of analyzing Vector Space Models of text from
document representation techniques in natural language processing. The results of assessing the
statistical significance of various homological features provides a framework of understanding genre
through structural features of text-documents. In our work of extending this topological approach
to a k-medoids clustering, we failed to see a significantly recognizable cluster of books of particular
genres.

In light of these results, further work is needed to explore the classification power of persistent di-
agrams. This area could expand by minimizing computational complexity, running a similar analysis
on a larger, more comprehensive dataset of texts. For a comparison of current persistence representa-
tions, see (Adams 2017). We might also employ other document representation techniques which may
be better suited to capture genre, or switch dimensionality reduction techniques. This project aims
to provide the general framework and establish that topological data analysis and natural language
processing intersect in a meaningful and promising area of research.
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471), taught by Lori Ziegelmeier at Macalester College. I would like to thank her for her constant
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Appendix A: Figures

Figure 12: A visual representation of the iterative analysis employed to return the final data set. The
blue table represents an instantiation of a single book, with the approrpriately extracted homological
statistics. This frame is then appended to a global dataframe.
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Figure 14: The same computation done for Figure 9, with n = 200 paragraphs.
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Appendix B: Selections of code3

###Create DTM

computeDTM <- function(IDNum, lineLimit){

book <- gutenberg_download(IDNum, strip=TRUE)

book <- transmute(book, gutenberg_id = gutenberg_id,

text = iconv(book$text,"UTF-8","UTF-8",sub=’’))

book <- unnest_tokens(book,input="text",output="Paragraph",token="paragraphs")

book <- book[50:(50+lineLimit),]

book <- book %>% filter(!is.na(book$Paragraph))

book <- VCorpus(VectorSource(book$Paragraph))

book <- tm_map(book, stripWhitespace)

book <- tm_map(book, content_transformer(tolower))

book <- tm_map(book, removeWords, stopwords("english"))

book <- tm_map(book, removePunctuation)

book <- tm_map(book, stemDocument, language = "english")

dtm <- DocumentTermMatrix(book)

dtm <- weightTfIdf(dtm)

if ((dim(dtm)[2]) != 0){

dtmLSA <- lsa(dtm, dims=dimcalc_share())$tk

return(dtmLSA)

} else {

return(NULL)

}

}

###makeDistanceMatrix

makeDistanceMatrix <- function(datamatrix){

distanceMatrix <- datamatrix

cosineDistMatrix <- cosSparse(distanceMatrix)

diag(cosineDistMatrix) <- 0

for(row in 2:nrow(cosineDistMatrix)) {

#implementation of Zhu SIFTS algorithm

cosineDistMatrix[row, row-1] <- 0

cosineDistMatrix[row-1, row] <- 0

}

for(row in 1:nrow(cosineDistMatrix)) {

for(col in 1:nrow(cosineDistMatrix)) {

#scale to see features clearly

cosineDistMatrix[row,col] = abs(cosineDistMatrix[row,col])*1000000000000000000

}

}

return(as.matrix(cosineDistMatrix))

3In the interest of providing clear and transparent implementation of code, functions have been selected specif-
ically for reference from portions of the paper. For the interested reader, the full repository is available at
https://github.com/kevin-shin/TopologyNLP.
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}

###Main function

mainDataFrame <- data.frame(matrix(ncol = 8, nrow = 0))

columns <- c("bookID", "numHoles", "category", "averageBirthLocation",

"birthLocationSD", "averageDeathLocation", "deathLocationSD", "avgLengthofLife")

colnames(mainDataFrame) <- columns

#generate the main dataframe

main <- function(numLines){

for (category in topics){

bookShieldIDs <- isolateIDs(category)

for (value in bookShieldIDs){

bookDTM <- computeDTM(value,numLines)

print(value)

if (!is.null(bookDTM)){

bookDistanceMatrix <- makeDistanceMatrix(bookDTM)

Diag <- ripsDiag(X = bookDistanceMatrix,

maxdimension = 1,

maxscale = 100,

dist = "arbitrary",

library = "Dionysus",

printProgress = FALSE,

location=TRUE)

numHoles <- summary.diagram(Diag[["diagram"]])$n

print(numHoles)

tempDF <- data.frame(value, numHoles, category, mean(Diag$birthLocation),

sd(Diag$birthLocation), mean(Diag$deathLocation), sd(Diag$deathLocation),

mean(Diag$deathLocation- Diag$birthLocation))

names(tempDF) <- c("bookID", "numHoles", "category", "averageBirthLocation",

"birthLocationSD", "averageDeathLocation", "deathLocationSD", "avgLengthofLife")

mainDataFrame <- rbind(mainDataFrame,tempDF)

}

else {

print("0 here")

tempDF <- data.frame(value, 0, category, 0, 0, 0, 0, 0)

names(tempDF) <- c("bookID", "numHoles", "category", "averageBirthLocation",

"birthLocationSD", "averageDeathLocation", "deathLocationSD", "avgLengthofLife")

mainDataFrame <- rbind(mainDataFrame,tempDF)

}

}

}

return(mainDataFrame)

}

###return matrix of p-values. Statistic of interest must be replaced inside the function

compareStatistics <- function(dataFrame){
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df <- data.frame(matrix(0, ncol = 5, nrow = 5))

colnames(df) <- topics

rownames(df) <- topics

for (row in rownames(df)){

for (col in colnames(df)){

genreRowTable <- dataFrame %>% filter(category == row)

genreColTable <- dataFrame %>% filter(category == col)

significanceLevel <- t.test(genreRowTable$averageDeathLocation,

genreColTable$averageDeathLocation)$p.value

df[row,col] <- significanceLevel

}

}

return(df)

}

### EXAMPLE: return a distance matrix for the persistence diagrams

### Wasserstein, Manhattan

collection <- bookList

clusteringPD <- function(numLines){

similarityMatrix <- matrix(ncol = length(collection), nrow = length(collection))

diag(similarityMatrix) <- 0

for (bookIndexHoriz in 1:length(collection)){

for (bookIndexVert in 1:length(collection)){

if (bookIndexVert > bookIndexHoriz){

bookDTM <- computeDTM(collection[bookIndexVert],numLines)

otherBookDTM <- computeDTM(collection[bookIndexHoriz],numLines)

if (!is.null(bookDTM) && !is.na(otherBookDTM)){

bookDistanceMatrix <- makeDistanceMatrix(bookDTM)

otherBookDistanceMatrix <- makeDistanceMatrix(otherBookDTM)

Diag <- ripsDiag(X = bookDistanceMatrix,

maxdimension = 1,

maxscale = 100,

dist = "arbitrary",

library = "Dionysus",

printProgress = FALSE,

location=TRUE)

DiagOther <- ripsDiag(X = otherBookDistanceMatrix,

maxdimension = 1,

maxscale = 100,

dist = "arbitrary",

library = "Dionysus",

printProgress = FALSE,

location=TRUE)

wassersteinDist <- wasserstein(Diag[["diagram"]], DiagOther[["diagram"]],

p = 1, dimension = 1)

similarityMatrix[bookIndexHoriz,bookIndexVert] <- wassersteinDist
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}

}

else {

similarityMatrix[bookIndexHoriz,bookIndexVert] <- 0

}

}

}

mainMatrix <- similarityMatrix + t(similarityMatrix)

toReturn <- as.data.frame(mainMatrix)

colnames(toReturn) <- collection

rownames(toReturn) <- collection

return(toReturn)

}

similarityTable <- clusteringPD(100)

pamx <- pam(similarityTable, 5, diss = FALSE, cluster.only = FALSE, metric = "manhattan")

### EXAMPLE: Run clustering algorithm

# BottleNeck, Euclidean

bottleNeckEuclidean_15 <- pamx

evaluateClusters <- function(dataframe,i){

return(row.names(subset(dataframe,widths.cluster == i)))

}

clusteringScore <- function(dataframe){

df <- data.frame(matrix(0L,nrow = length(unique(dataframe$widths.cluster)), ncol = 5))

colnames(df) <- topics

rownames(df) <- unique(dataframe$widths.cluster)

for (i in rownames(df)){

clusterVector <- evaluateClusters(dataframe,i)

for (value in clusterVector){

relBook <- gutenberg_metadata %>% filter(gutenberg_id == value)

category <- relBook$gutenberg_bookshelf

for (genre in colnames(df))

if (grepl(genre,category)){

df[i,genre] <- df[i,genre] + 1

}

}

}

normalized <- normalize.rows(df)

colnames(normalized) <- topics

rownames(normalized) <- unique(dataframe$widths.cluster)
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return(as.data.frame(normalized))

}

returnScores <- function(dataframe){

clusters <- clusteringScore(as.data.frame(dataframe$silinfo))

df <- data.frame("medoidID" = row.names(dataframe$medoids))

df <- cbind(df,clusters)

df <- df %>% mutate("medoidCategory" = "temp")

for (i in 1:nrow(df)){

df$medoidCategory[i] <- getCategory(df$medoidID[i])

}

return(df)

}
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